

Temperature control by simulated adaptive layer times Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Temperature control by simulated adaptive layer times in powder bed fusion processes

Christoph Behrens · Niklas Ostermann · Jan T. Sehrt · Vasily Ploshikhin

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

https://www.slm-pushing-the-limits.com/, last visited 4.11.2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Cond

2

machine

Radiation

autic

Laser

Temperature control by simulated adaptive layer times

Christoph Behrens Rapid.Tech 2024

Laser

Temperature control by simulated adaptive layer times

Christoph Behrens Rapid.Tech 2024

Laser

Layer

time

Temperature control by simulated adaptive layer times

Christoph Behrens Rapid.Tech 2024

Laser

Layer

time

Temperature control by simulated adaptive layer times

Christoph Behrens Rapid.Tech 2024

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Calculate optimized layer times

...and maximize the potential of multi-laser machines

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Calculate optimized layer times

Test scenario

Simulation method

Simulation-based waiting times

Summary & Outlook

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Test scenario

SLM NXG XII 600

 \rightarrow Parallel mode

 \rightarrow Each laser: one double conus + offset specimen

Simulation

→ Practically one specimen pair is a single laser process

\rightarrow Inconel 718	Recoating time + offset specimen	15 s
	Layer thickness	30 µm
	Power	400 W
	Speed	1200 mm/s
	Hatch distance	90 µm

Y. Huo, C. Hong, H. Li, and P. Liu, Materials Research, vol. 23, 2020.

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

Thermal Macro Simulation

- \rightarrow One double-conus
- \rightarrow Offset specimen in recoater time

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

Thermal Macro Simulation

- \rightarrow One double-conus
- \rightarrow Offset specimen in recoater time
- \rightarrow Locally adaptive finite element mesh
- → Powder & Baseplate represented by coarse elements
- \rightarrow Part fine enough to represent geometry
- → Calculate temperature distribution based on energy activation

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

Thermal Macro Simulation

- \rightarrow One double-conus
- \rightarrow Offset specimen in recoater time
- \rightarrow Locally adaptive finite element mesh
- → Powder & Baseplate represented by coarse elements
- \rightarrow Part fine enough to represent geometry
- → Calculate temperature distribution based on energy activation
- \rightarrow Layer-wise or batch-wise activation

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

- \rightarrow Activate batches of 60 layers at once
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

- \rightarrow Activate batches of 60 layers at once
- \rightarrow Time from CLI + offset via input

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

- \rightarrow Activate batches of 60 layers at once
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

- \rightarrow Thermal macro simulation: activate batches of 60 layers at once
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input
 - \rightarrow Interpass layer time algorithm applied in single layer

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

- \rightarrow Thermal macro simulation: activate batches of 60 layers at once
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input
 - \rightarrow Interpass layer time algorithm applied in single layer

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Layer time Temperature Time

Simulation method

- \rightarrow Thermal macro simulation: activate batches of 60 layers at once
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input
 - \rightarrow Interpass layer time algorithm applied in single layer

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Layer time Activation time Temperature

Simulation method

- \rightarrow Thermal macro simulation: activate batches of 60 layers at once
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input
 - \rightarrow Interpass layer time algorithm applied in single layer \rightarrow Activate Hatching

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Layer time Activation time cooling Temperature offset

Simulation method

Interpass layer time algorithm

- → Thermal macro simulation: activate batches of 60 layers at once
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input

recoater

 → Interpass layer time algorithm applied in single layer
→ Activate Hatching,

calculate cooling

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Layer time Activation time cooling Temperature offset

Simulation method

Interpass layer time algorithm

- → Thermal macro simulation: activate batches of 60 layers at once
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input

recoater

 → Interpass layer time algorithm applied in single layer
→ Activate Hatching,

calculate cooling

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

layers at once Layer time Activation time cooling offset recoater waiting time/ Interpass layer time Interpass layer temperature Time

Simulation method

- \rightarrow Thermal macro simulation: activate batches of 60
- \rightarrow Energy from CLI
- \rightarrow Time from CLI + offset via input
 - \rightarrow Interpass layer time algorithm applied in single layer
 - \rightarrow Activate Hatching, calculate cooling
 - \rightarrow Waiting time until interpass layer temperature is reached
- 7

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

layer reached Batch time 60 layer 60 times waiting time Interpass layer temperature Time

Simulation method

- \rightarrow Interpass layer time algorithm applied in single
- \rightarrow Activate Hatching, calculate cooling
- \rightarrow Waiting time until interpass layer temperature is
 - \rightarrow Apply waiting time to batch activation

Christoph Behrens Rapid.Tech 2024

FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation method

- \rightarrow Interpass layer time algorithm applied in single
- \rightarrow Activate Hatching, calculate cooling
- \rightarrow Waiting time until interpass layer temperature is
 - \rightarrow Apply waiting time to batch activation
 - \rightarrow Recalculate waiting time for each batch

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Calculate optimized layer times

Test scenario

Simulation method

Simulation-based waiting times

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation-based waiting times

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Simulation-based waiting times

Christoph Behrens Rapid.Tech 2024

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Waiting is not efficient

200 °C interpass layer temperature → 375 % more process time for a "simple" geometry

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Increased cooling coefficients

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Calculate optimized layer times

Fast simulation to calculate and evaluate interlayer waiting times

Simulation-based waiting times more effective than minimal layer times

Waiting is not efficient

Innovations in cooling are necessary

Christoph Behrens Rapid.Tech 2024 FB01 - Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Let's empower metal 3D-printing technology together and get in contact

Christoph Behrens · Niklas Ostermann · Jan T. Sehrt · Vasily Ploshikhin

Contact:

Airbus Endowed Chair for Integrative Simulation and Engineering of Materials and Processes

Bremer Center for Computational Materials Science University of Bremen, Am Fallturm 1, 28359 Bremen behrens@isemp.de, www.isemp.de Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag