

AIM3D

Approach for Mechanical Isotropic Material Extrusion Printing

Verena Witt – verena.witt@aim3d.de

Introduction – Verena Witt

2020 B. Sc. in Biomedical Engineering2023 M. Sc. in Mechanical Engineering

- Joined New AIM3D as a process engineer in 2023
- Develops and optimizes the Voxelfill method

Oslo

Technology: CEM-process – All in one

The Problem of Anisotropy in Additive Manufacturing

Extrusion based AM today

- Loss of strength in printing direction
- Part breaks along the layers due to weak adhesion
- Technology often limited to prototypes

Hardware optimization is limited

Software developement

 Combination of material extrusion printing and injection moulding to get isotropic behavior

Voxel geometry Room filling orientation

Implementation in a slicing software

Increasing the Z-strength of polymer parts

mastering the anisotropy of 3D printed parts

up to 3 times faster print time for solid objects

 Combination of material extrusion printing and injection moulding to get isotropic behavior

proof of concept needed

Step 1: Choose material and test method

Step 2: Fabricate test samples

Step 3: Characterize samples

Step 4: Discuss anisotropic behavior

Material and Methods: Choose Material and Test Method

Material

- PETG with 30% glassfiber from Polymaker (PETG-1013)
 - Printed conventionally layer by layer
 - Printed with Voxelfill

Test Method

- Density measurements (Archimedes)
- Tensile strength tests (ISO 527)
 - x direction
 - z direction
- Confocal microscopy

Parameter	Testing method	Value
Density [g/cm ³ at 21.5 °C]	ASTM D792	1.39
Glass transition temperature [°C]	DSC, 10 ° C/min	81

Material and Methods: Fabricate Test Samples

- Printing of samples was done on ExAM255 machine from NEW AIM3D
- Parameters for printing conventionally were searched
- Filling of the voxels was optimized

Parameter	Value	Unit
Bed temperature	70	°C
Feed zone temperature	45	°C
Nozzle temperature	270	°C
Nozzle diameter	0.5	mm
Layer height	0.1	mm
Line width	0.6	mm
Printing speed	80	mm/s
Extrusion flow factor perimeter	98	%
Extrusion flow factor ± 45°	98	%
Extrusion flow factor Voxelfill	120	%
Retraction	3	mm
Retraction speed	25	mm/s

- Temperature
- Material amount
- Speed
- Waiting times

Material and Methods: Fabricate Test Samples

- Four test groups were printed
 - 1) Conventional printing in x-direction
 - 2) Conventional printing in z-direction
 - 3) Voxelfill in x-direciton
 - 4) Voxelfill in z-direction

x - direction w

- 10x10x10 mm cubes for density measurements
- Tensile samples were milled out of printed blocks

Material and Methods: Fabricate Test Samples

Results : Tensile Strength Tests

Density of Voxelfill samples was 94%

Anisotropy decreased from 57% to 13%

Results: Fiber Distribution in z-Direction

Ζ

A – base structure B – boundary area C – Voxel area

Results: Fiber Distribution in z-Direction

Conventional

A – base structure B – boundary area C – Voxel area

Step 4: Discuss Results

- Voxelfill samples showed lower density of 94 %
- Microscopy showed fibers distributed in z-plane
- Anisotropy in tensile strength was reduced to 13 %
- Maximum tensile strength decreased by 12 %

Material	Anisotropy [%]	Strategy	Anisotropy [%] after strategy	Decrease in x-strength [%]	REF
PLA	52.00	-	-	-	[32]
ABS	65.50	-	-	-	[33]
PLA	32.90	z-pinning	9.08	59.89	[8]
PLA-CF	32.72	z-pinning	29.32	65.18	[8]
PETG-GF	56.71	Voxelfill	13.47	11.86	

Step 4: Discuss Results

- Voxelfill samples showed lower density of 94 %
- Microscopy showed fibers distributed in z-plane
- Anisotropy in tensile strength was reduced to 13 %
- Maximum tensile strength decreased by 12 %

Material	Anisotropy [%]	Strategy	Anisotropy [%] after strategy	Decrease in x-strength [%]	REF
PLA	52.00	-	-	-	[32]
ABS	65.50	-	-	-	[33]
PLA	32.90	z-pinning	9.08	<mark>59.89</mark>	[8]
PLA-CF	32.72	z-pinning	29.32	<mark>65.18</mark>	[8]
PETG-GF	56.71	Voxelfill	13.47	11.86	

The Problem of Additive Manufacturing – Solved!

AM today

~40 % strength in printing direction

Voxelfill

~85-100 % strength in printing direction

This work was funded by the Ministry of Economics, Infrastructure, Tourism and Labour Mecklenburg Western Pomerania (funding code TBI-1-094-U-030).The authors express their sincere thanks to the Chair of Microfluidics of the University of Rostock, for technicalsupport.

AIM3D

Questions

Verena Witt – verena.witt@aim3d.de

Use Case

Housing for dairy food production

- PLA (food certified)
- previously part failure at drilling holes
- locally printing with Voxelfill enhances strength and prolongs life cycle of the product

Mastering applications in the field of

Food production

Outlook and potential

- Despite high tensile strength, the Voxelfill samples
 still have pores (air pockets) in the range of <0.15
 mm³
- By further optimising the filling density, an even higher tensile strength and thus isotropy is conceivable
- The potential of the process is expanded through the processing of fibre-reinforced materials and multi material strategies

The Widest Material Portfolio in Additive Manufacturing

Conductivity

Flame Resistance

Flexibility

Chemical Resistance

Temperature Analysis

PEI – Versatile Material made Affordable in Pellet Form

100 90 80 ΖX 70 60 XZ_ 50 XY 40 30 20 10 0 ULTEM 9085 -ULTE<u>M 9085 -</u> ULTEM 9085 -ULTEM 9085 -ULTEM 9085 -INJECTON EXAM 510 XY **FILAMENT XY** EXAM 510 ZX FILAMENT ZX MOLDING

* Values without Voxelfill

Ultem 9085 – Tensile Strength in MPa

- Pellet 3D Printer with versatile use cases
 User:
 - Metal- and Ceramic Injection Molding Companies
 - Research institutes and colleges
 - Material compounders and manufacturers

3D Print:	Dual print with two materials
Build Space:	255 x 255 x 255 (mm³)
Build Rate:	20 - 40 cm ³ /h (with 0.4 mm nozzle
	(depends on material)
Heated Bed:	Up to 120 °C, removable
Supply:	230V/10A, 5.5 bar press. air

- Industrial pellet 3D Printer for high performance polymers
- User:
 - Aviation suppliers
 - Transportation suppliers
 - Automotive & gen. production

3D Print:	Multi-material with up to three materials
Build Space:	510 x 510 x 400 (mm³), heated up to 200°C
Build Rate:	Up to 250cm³/h (with 0.4 mm nozzle) (depends on material)
Heated Bed:	Up to 200 °C, vacuum table
Supply:	400V/32A, 5.5 bar press. air

