

End-to-end process control with standardized off-the-shelf components

Daniel Reitemeyer Business Development

Content

End-to-end process control with standardized off-the-shelf components

Part 1: Off-the-shelf components for modern LPBF machines

Part 2: End-to-end process control

SCANLAB at a Glance

- Worldwide leading OEM manufacturer of scan solutions for deflecting and positioning laser beams
- Our high-performance components are the core of e.g.:
 - Laser welding robots
 - Laser systems for medical treatments
 - Micro-structuring systems
 - LPBF machines
- About 40,000 units manufactured and installed annually
- Trendsetting developments in the fields of electronics, mechanics and optics

Mirrors in motion

Fastest Beam Deflection for Laser Powder Bed Fusion

watch video online

Off-the-shelf optical bench for LPBF

fiberSYS – maximum field overlap for multi laser machines

Multi-laser synchronization - RTC

Real time control of Scan system and laser with 10 µs cycle time

RTC

- Quick, precise, synchronized control of 2D and 3D scan systems, lasers and peripheral equipment in real time
- 2D and 3D image field correction
- Status signal evaluation
- Processing-on-the-fly functionality for moving objects
- Control of 3-axis scan systems
- Option: micro vectoring with 10 µs steps
- Master/Slave configuration for synchronized processing in multi-laser machines, e.g. 2 trailing laser beams
- PCI_e and Ethernet interfaces, also as DIN rail version

100 kHz Process Monitoring & Closed Loop Control

Open Interface Extension (OIE) - Control Electronics and Sensor Interfaces

OIE extends the RTC6 Scan control card with

- Third Party Sensor Interfaces
- synchronization of third-party process sensors with 100 kHz position data
- Interface for machine's process data base/analysis

Features

- 100 kHz data synchronization based on most accurate position data source: returned actual positions of the scan axes
- Correction of position dependent deviations possible
- Closed loop melt pool control and data synchronization at the same time

Closed-loop melt pool control

Real time systems for sensor based laser power control

Open Interface Extension (OIE)

RTC scan and laser control board

- real time scan head control: RTC sets laser power with 100 kHz
- with OIE: sensor input connected to real time system

OIE enables customers to transform process knowledge into own process control IP and USPs

100 kHz Closed-loop melt pool control

Advanced feature set for switching on vector level

Overhang with uncontrolled laser power (316L, constant power 300W, 1050mm/s)

Overhang with controlled laser power (316L, base power 300W, 1050mm/s)

Parameter switching

- Up to 63 PID parameter sets per layer, vector-wise switchable, e.g. for hatch vs. contour
- Auto switch to another parameter set after x-times 10 µs, for vector beginning vs. ongoing vector
- Hold (e.g. for sky writing)
 - Auto start/hold with Laser On/Off
 - Faulty measurement values during Laser Off are ignored
 - Filter buffer stays filled
- Reset (e.g. for jumps to other areas)
 - Resets filter buffer and/or control error

Scan Control

Real time control of Scan system and laser with 10 µs cycle time

Hardware: RTC6

- Scan head and laser control with 100 kHz frequency
- Synchronization of all laser beams in multi-laser machines, e.g. 2 trailing laser beams

Software: SCANmotionControl

- pipeline based laser trajectory planning software
- offline laser path simulation including physical characteristics of the scan system
- "What you simulate is what you get"

Point cloud based parameter assignment

LPBF specific advantage of SCANmotionControl

Fraunhofer 125 W Laserpower 250 W

SCANmotionControl

- 100 kHz power assignment -> @ typical LPBF speed of 1 m/s
 - -> 10 µm point cloud parameter grid.
- Variation of speed at the same time

LPBF: Geometry adapted process control

- Project with Fraunhofer ILT
- Suppression of edge bulging
- Rampings as a function of vector length

Experimental Set-up

Parameter investigation with test cubes with varied web thicknesses

Process zone/ Powder bed

Benchmark: Constant parameters

- Melt tracks to not represent hatch vectors any longer when vectors get shorter
- correlation between programmed and resulting geometry is reduced.

New Possiblities with SMC

SCANmotionControl

Data Preparation

Process parameters for ramps as a function of vector length classes

Adaption with linear Power Ramps

- Melt tracks follow programmed vectors, even at short vectors
- Correlation between programmed and resulting geometry maintained

Melt Track Comparison for Tip Geometry

Exact heat input for suppression of Edge Bulging

Constant Parameters

Geometry adapted Control

Melt Track Comparison for Tip Geometry

Exact heat input for suppression of Edge Bulging

Constant Parameters

Geometry adapted Control

Demonstrator parts

Demonstrator parts

Conclusion of part 1

We have off-the-shelf machine components available for

- The complete optical bench for multi laser machines
- 100 kHz point cloud based parameter setting
- 100 kHz process and laser path monitoring
- 100 kHz closed loop control

Time-to-market

- a machine builder needs to integrate the components into his machine.
- The complete software stack needs to be adapted to make new possibilities available for the machine user.

Content

End-to-end process control with standardized off-the-shelf components

Part 1: Off-the-shelf components for modern LPBF machines

Part 2: End-to-end process control

Machine Control Framework for Industrial LPBF

Shortening of Time-to-Market with prepared End-to-End Framework

Open Access State of the Art Industrial Additive Manufacturing System

Open Access Closed Loop Application Stack

End-to-end process control with standardized off-the-shelf components

Layer wise laser power control

Data recording and process monitoring

Closed loop melt pool control

Open Interface Extension

Sensor synchronization and data collection

Layer wise Laser Power Control

Research project

- Pixel definition, e.g.
 150 μm x 150 μm
- Average temperature value of every pixel
- Pixel wise modulation of laser power
- Recalculation during recoating
- Source Code will be open sourced

Layer wise Laser Power Control

Research project

- Pixel definition, e.g.150 μm x 150 μm
- Average temperature value of every pixel
- Pixel wise modulation of laser power
- Recalculation during recoating
- Source Code will be open sourced

Point cloud based parameter assignment

LPBF specific advantage of SCANmotionControl

Fraunhofer 125 W Laserpower 250 W

SCANmotionControl

- 100 kHz power assignment -> @ typical LPBF speed of 1 m/s
 - -> 10 µm point cloud parameter grid.
- Variation of speed at the same time

LPBF: Geometry adapted process control

- Project with Fraunhofer ILT
- Suppression of edge bulging
- Rampings as a function of vector length

Seamless end-to-end parameter transfer

Integration in **3MF** file

Execution with **SCANmotionControl**

```
double initialPower[1];
                                                             SCANLAB
initialPower[0] = 0.5350;
slsc_ParaSection powerRamps[7];
powerRamps[0] = { 88.0, 0.5350 };
powerRamps[1] = { 2.0, 0.4825 };
powerRamps[2] = { 2.0, 0.4600 };
powerRamps[3] = { 2.0, 0.4275 };
powerRamps[4] = { 2.0, 0.4000 };
powerRamps[5] = { 2.0, 0.3425 };
powerRamps[6] = { 2.0, 0.3000 };
slsc_MultiParaTarget multiTarget;
multiTarget.m_nNumTargets = 7;
multiTarget.m_pTargets = powerRamps;
m_pSDK->slsc_job_jump(contextHandle, point1.data());
m_pSDK->slsc_job_para_enable(contextHandle, initialPower);
m_pSDK->slsc_job_multi_para_line(contextHandle, point2.data(), &multiTarget);
```


Case Studies

SCANLAB innovators for industry

LPBF Scanning Engine

Off-the-shelf Scan Head and Electronics

- fiberSYS Scan heads
- RTC6 Scan control cards with Open Interface Extension

Open Access End-to-End Software Stack

- Autodesk Machine Control Framework
- Input file format: 3MF
- High Level Interface to base machine

Features

- Open toolpath, open laser timings
- 100 kHz point cloud based parameter setting
- 100 kHz process and laser path monitoring
- 100 kHz closed loop control
- Complete insight into plus ownership of source code

Virtual AM machine

Input:

Build processor output including SmC parameters

- Marking speed in m/s
- (Minimum mark speed)
- Corner tolerance

Output:

Build process simulation

- Simulation programmed geometry vs. executed scan path in 10 μs steps
- Build time calculation with 10 µs accuracy

watch video online

Conclusion

End-to-end process control with standardized off-the-shelf components

Off-the-shelf machine components available for

- The complete optical bench for multi Laser Machines
- 100 kHz point cloud based parameter setting
- 100 kHz process and laser path monitoring
- 100 kHz closed loop control

End-to-end process control by

- Open Access Closed Loop Application Stack
- Complete insight into plus ownership of source code
- Commercially usable under BSD license
- Open Toolpath
- → Fast Access to beyond state-of-the-art LPBF technology
- → Open
- → Customizable
- → Commercially usable