ζεταμίχ by NAN@e

Additive manufacturing of dielectric material for RF applications

Our History :

Advanced material provider

- Company specialized in the ceramic powder production
- Industrial scale production
- Focused on innovation
- Zetamix brand : metal and ceramic filament for FFF

Years of experience

rience 100 kg to 1 ton

2 R&D centers

20 people

ZETAMIX A complete solution

Materials :

Alumina Zirconia (white and black) 316L H13 SiC Porcelain Zetamix Epsilon line

Machines : 3D Printer Debinding kit Sintering furnace

ZETAMIX

How it works

T

Dielectric materials for radiofrequency (RF) applications

30 MHz

300 MHz

3 GHz

30 GHz

300 GHz

3 kHz

30 kHz

300 kHz

3 MHz

A dielectric is an electrical insulator, which cannot conduct an electric current.

-> A dielectric material is characterized by its permittivity (or dielectric constant) ϵ_r and its dissipation factor (or loss tangent) tan δ

Electromagnetic wave inside a slab of dielectric

 $\epsilon_r > 1$ Lower Impedance **Shorter Wavelength Slower Velocity Magnitude Attenuated**

High loss material

Low loss material

A material that will slow down the EM wave A dielectric prism, lense... will deviate the EM wave from its initial course.

The higher the permittivity is, the more the wave course will be deviated

ZETAMIX LINE – Dielectric properties

Ceramic filaments

Zetamix	Alumina	Zirconia	SiC	TiO2
Properties				
Dielectric constant (permittivity)	9 (± 0.2)	32 (± 0.5)	15 (± 0.5)	75
Loss tangent	< 1x10 ⁻⁴	≈ 1x10 ⁻³	≈ 0,3	≈ 1-3 x10 ⁻³

ZETAMIX EPSILON LINE

Ceramic filled filaments – non sinterable

Zetamix	£ = 2.2	E= 4.5	E= 7.5	E= 10
Properties				
Dielectric constant (permittivity)	2.2 (± 0.2)	4.5 (± 0.5)	7.5 (± 0.5)	10 (± 0.5)
Loss tangent	< 1x10 ⁻³	≈ 1x10 ⁻³	≈ 1x10 ⁻³	≈ 1x10 ⁻³
HDT (°C @0,45MPa)	110	110	110	110
Tensile strengh			23 MPa	

Dielectric 3D printing for radiofrequency (RF) applications

Why using 3D printing for RF?

1- to produce complexe shapes, small volume production...

Why using 3D printing for RF?

2- To tune permittivity through variations on infill

Why using 3D printing for RF?

3- to produce metamaterial and metasurfaces, structured below the operating wavelength

DEFLECTOR

• 28 and 46 cm metasurface Material: Zetamix Epsilon 7,5

Potential applications: low-cost antennas for

- Point-to-point, Point-to-Multipoint communication
- Satellite communication on moving platforms

Low-profile 2D-beam-steering antenna

Directive lens antenna

https://ieeexplore.ieee.org/document/9924439 https://hal.science/hal-04630858/

DEFLECTOR

Two deflectors Risley scanning system : need the printing of **very fine cells** and a **tuning of the dielectric permittivity** at the cell scale

Fig. 6. Normalized gain in simulation (dashed line) and measurement (solid line) at 29 GHz for seven different steered angles.

Low-Profile Highly Directive 2D-Beam-Steering Antenna in Ka-band with 3D-printed All-dielectric Sub-wavelength Deflectors Thi Quynh Van Hoang, Matthieu Bertrand, Erika Vandelle, Brigitte Loiseaux

DEFLECTOR FOR SATCOM

Off-axis lens design

Of axis Lens

29 GHz

30 GHz

DIELECTRIC RESONNATOR ANTENNA

- Variable infill allowing an adjustable permittivity
- Material: Zetamix zirconia
- Application in satellite communifaction (uplink/downling in the same antenna)

LABORATOIRE D'ELECTRONIQUE ANTENNES ET TELECOMMUNICATIONS

https://ieeexplore.ieee.org/document/9768899

DIELECTRIC RESONNATOR ANTENNA

DIELECTRIC RESONNATOR ANTENNA FOR SATELLITE CUBSAT & IOT

RF REFLECTARRAY

- Metamaterial
- Material: Zetamix Epsilon 2.2 & 7.5

LABORATOIRE D'ELECTRONIQUE ANTENNES ET TELECOMMUNICATIONS

« 3D Printed Dual Material Reflectarray Antenna » publication in process

PATCH ANTENNA

- Multimaterial 3D printing
- Material: Zetamix Epsilon 7.5 + silver ink
- Full 3D printed fonctional antenna

https://hal.science/hal-04630921/ Design of Antennas Using Additive Technology With Surface Metallization – publication in process

Contact us at

contact@zetamix.com

Follow Nanoe on linkedin for more news