

Demonstration of novel fiber-coupled phosphor thermometry in a laser powder bed fusion process

Hanna Schönrath

André Müller, Jan Wegner, Torsten Endres, Stefan Kleszczynski

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Fundamentals

Luminescence

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

"Some things, though they are not in their nature fire, nor any species of fire, yet seem to produce light" ~ Aristotle

Light emission distinct from incandescence / heat Principle: electron excitation

Sorted by trigger:

- Bio-Luminescence
- Chemi-Luminescence
- •
- Photo-Luminescence

Source: Günter Hentschel (2019; flickr.com)

3

UNIVERSITÄT D_U_I_S_B_U R G

Offen im Denken

Fundamentals

Phosphorescence

1. Excitation by external light source S₂ Internal Intersystem Crossing Conversion **4**•••• 1:7 < 10^ -8 s Fluorescence: Quenching Quenching Non-radiative relaxation Non-radiative relaxation Phosphorescence: > 10^ -8 s νÝ S₀ Fluorescence Phosphorescence vibrational **Energy Changes** States: Conversion/Crossing other Vibrational State Internal Conversion Excitation; Emission (florescence and Electronic State phosphorescence) Intersystem Crossing Vibrational Relaxation Quenching Other non-radiative relaxation A. H. Khalid and K. Kontis, "Thermographic Phosphors for High Temperature Measurements:

Jablonski energy-level diagram:

2. Energy release, return to ground state

\rightarrow Radiative:

\rightarrow non-radiative:

Principles, Current State of the Art and Recent Applications" (2008)

21.05.2025

Fundamentals

Temperature Dependency

Excitation, then:

- Emission, radiant: photon emittance (C-D)
- Relaxation, non-radiant: vibration or other (B-C, E-D)

At higher temperature:

- \rightarrow Increased intensity
- → higher probability for non-radiant return to ground state
- \rightarrow decreased lifetime

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

A. H. Khalid and K. Kontis, "Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications" (2008)

21.05.2025

Fundamentals

Phosphor Thermometry

- Temperature recording possible after calibration
 Lifetime: τ = 1/λ
 Decay: λ
- Thermographic phosphor: inorganic host doped with rare-earth elements or transition-metals

Current use cases: gas turbines, droplet and spray thermography

Motivation

Proof of Principle: In-Situ Phosphor Thermometry

Thermometry in PBF needed

- Cooling rates for manufacturing of bulk metallic glasses
- Temperature profiles for process monitoring
- Calibration of simulations

Current state of the Isrit possible to detect the laser-induced temperature increase

- Thermocouples
- easy to apply, direct measurement, large range, discrete, intrusive
- Thermal paint in PBF-LB/M by phosphor thermometry?
- Thermography

- easy application, low resolution, intensity limited, emissivity varies

Pyrometry

- high resolution, limited Intensities at lower T, emissivity varies

- Phosphor Thermometry
- \rightarrow AlSi10Mg + MFG:Mn blend

Methods

Ex-Situ Calibration

In-Situ Validation

Ex-Situ Sample Analysis

100 µm

[slm-solutions.com]

N_{2,out}

Methods

Phosphor Thermometry integrated into PBF-LB/M Machine

Calibration

21.05.2025

In-Situ reference pyrometry

- 10 layers, 25 kHz
- Emissivity acc to. T. Becker et al. (2024)
- Minimal spot size coverage (Rosenthal)
- Distinct peaks related to single laser vectors
- High temporal resolution
- Temperatures above 673 K registered

multiple peaks registered UNIVERSITÄT

Offen im Denken

In-Situ reference thermocouple measurement

- TC welded to bottom of 2 mm thick substrate plate
- 10 layers
- Low resolution, max T registered at ~320 K (less than minimum of pyrometer)
- Decay of ~ 4 s

Temperature increase for ~4 s registered

In-Situ Phosphor Thermometry

- 10 Hz, spot size excitation laser: 4 mm diameter
- Reducing diameter of ring-shaped sample, at 3 mm diameter: T- increase registered

Ex-Situ Sample analysis

wt.%	0	F	Mg	Al	Si	Ge
1	16.4	2.5	12.5	54.0	2.9	11.7
2	19.9		22.0	55.2	3.0	
3	6.3	0.4	1.5	83.3	8.0	0.6
ø 4-6	1.0 ±0.1		0,5 ±0.0	89.6 ±0.2	8.8 ± 0.3	

- Relative density: 95.66%
- Phosphorescence detected using PBF-LB/M-manufactured sample

Th. Phosphor found in pores

In-Situ Phosphor Thermometry

Summary

- Ex-Situ Calibration of Phosphor and matrix material
 - Matrix material contributes <0.6% to signal
- Reference measurements done by:
 - Pyrometry
 - Thermocouples
- In-Situ Phosphor Thermometry
 - Implementation
 - Successful measurement at low resolution

UNIVERSITÄT

I_S_B_U R G

Offen im Denken

In-Situ Phosphor Thermometry

Outlook & Challenges

- Resolution
 - Spatial and temporal
- Porosity
 - Combination of matrix material & th. phosphor
- Calibration
 - Measurement spot coverage
 - Distribution of phosphorescent particles
- Online measurement
- Manufacturing of marker parts
 - Ex situ thermal monitoring during use

Thank you for your attention!

Science corner: Demonstration experiment of bulk metallic glasses

Hanna Schönrath

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken