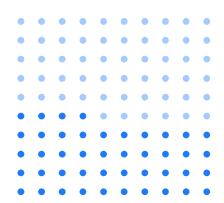


AM for defence – Increasing resilience in the supply chain Rapid.Tech 3D, 2024 – Erfurt

Michel Honoré, M.Sc.E. 15 May 2024

Contents

- Introducing FORCE Technology
- Supply chain resilience
- Motivation The 'why'
- Technique The 'how'
- Benefits Resilience + Time AND money
- Quality of AM components
- Summary



222 8888 222

950

Employees

Share of turnover abroad

Almost half of FORCE Technology's turnover comes from international customers through exports or foreign activities.

7,000+

Customers

150+ Collaboration projects

35+ New R&D projects

5,000+

Participants courses and events

50+ Disciplines

Motivation Supply chain issues?

Lead-time?

Price?

Environmental footprint?

15 May 2024

What constitutes "Supply Chain resilience"?

"Supply chain resilience refers to the ability of a supply chain to withstand and recover from disruptions while maintaining its functionality and efficiency. Several key components contribute to supply chain resilience:"

- 1. Redundancy: Having backup plans and alternative suppliers in place ensures that the supply chain can continue operating even if one supplier or component is disrupted.
- 2. Flexibility: A flexible supply chain can quickly adapt to changes in demand, supply, or disruptions by reallocating resources, adjusting production schedules, or finding alternative routes for transportation.
- 3. Agility: An agile supply chain can quickly adjust to changes in market conditions, customer preferences, or disruptions. [...]

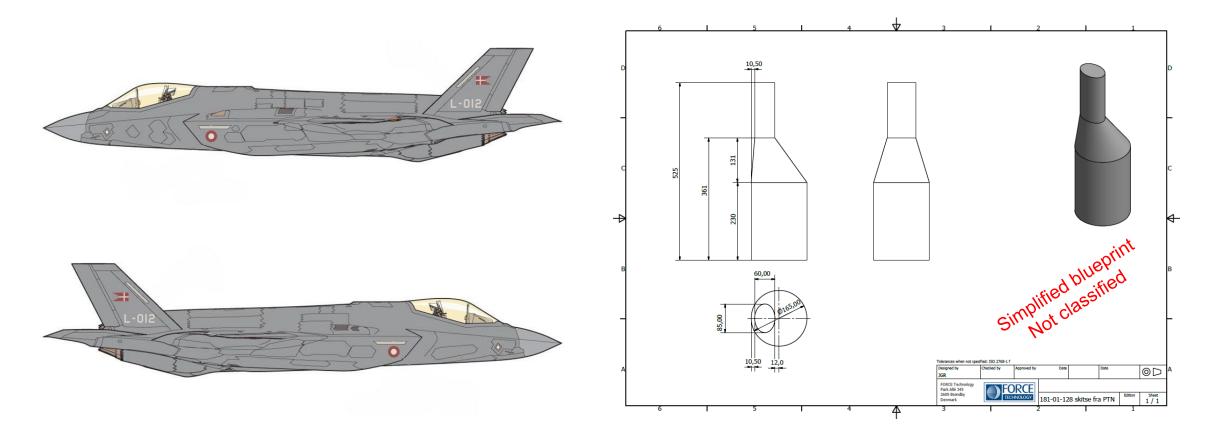
Motivation

AM enables alternative supply chains

- Alternative supplier: Produce your own (spare)parts
- Materials savings
- Processing time reductions of upto 95 %
- Refurbishing made possible
- Re-manufacturing enabled
- ... all of the above adds resilience to the supply chain

And in addition:

- Cost reductions upto 90 %
- Freedom of design



Challenge: F-35 component Baseline

E FGH E D 8 GH C-C D-D E-E H-H G-G E-F tin F-35A Lightning II levich

Example: Large-scale 3D printing for F-35

"A component" for the F-35 Joint Strike Fighter

Present day state-of-the-art

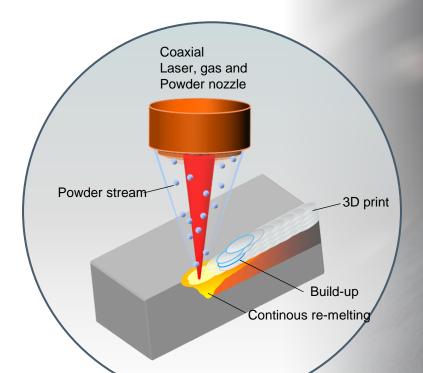
CNC machining – Baseline

- Alloy: 15-5 PH (Approx. 2x the price of AISI 316L)
- 219 kg rod base

11

• App. 120 hrs milling time

Technique The 'How'


Next generation large-scale 3D printer

Directed Energy Deposition

DED – Technology keywords

- Direct (blown) powder
- Laser energy source
- Shielding gas inherent
- Industrial robot control
- Large-scale
- High-deposition rates

Free-form 3D printing

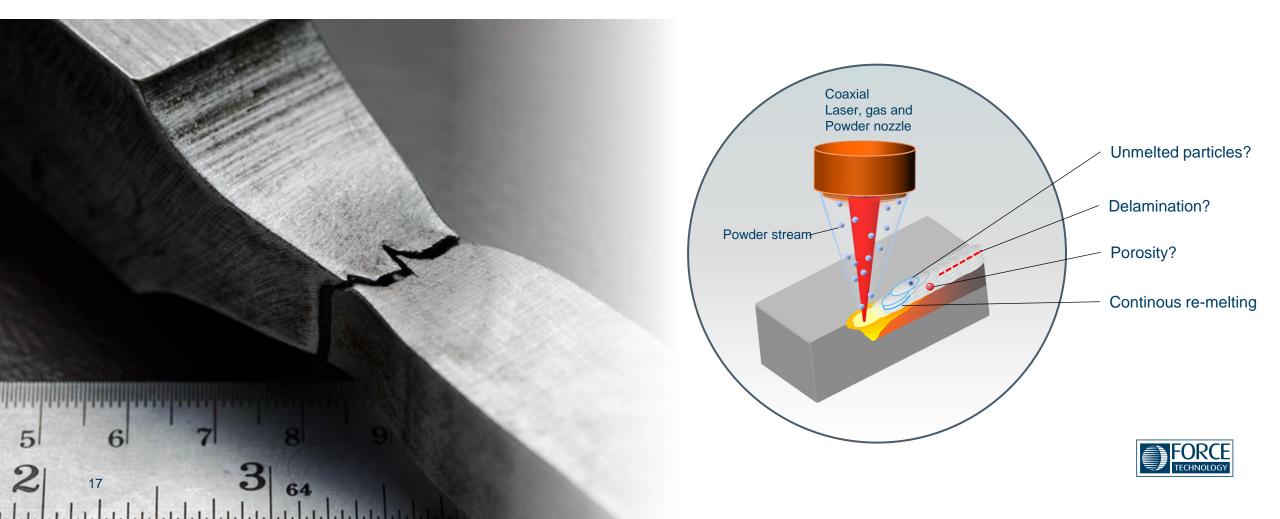
High-temp super-alloy for aerospace

3D printed 9 kg 4.5 hrs

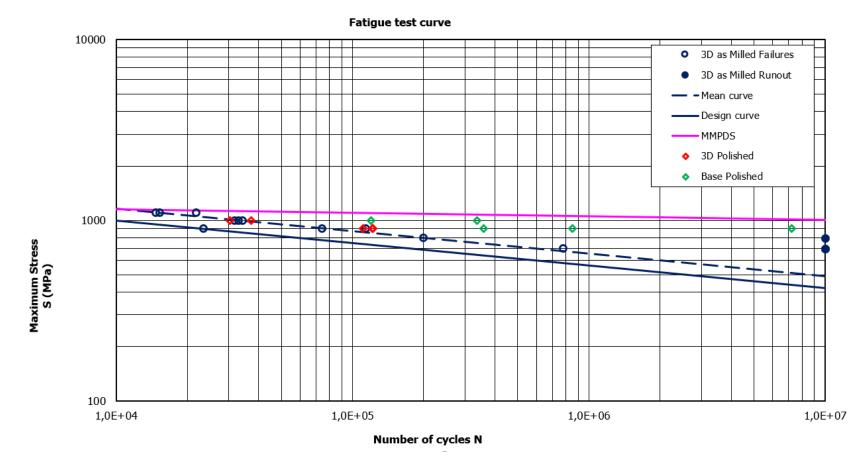
3D Laser Cladding

-from cylinder to ellipse

Run time: 1:27 mins



3D printed components – Are they any good? Mechanical test results

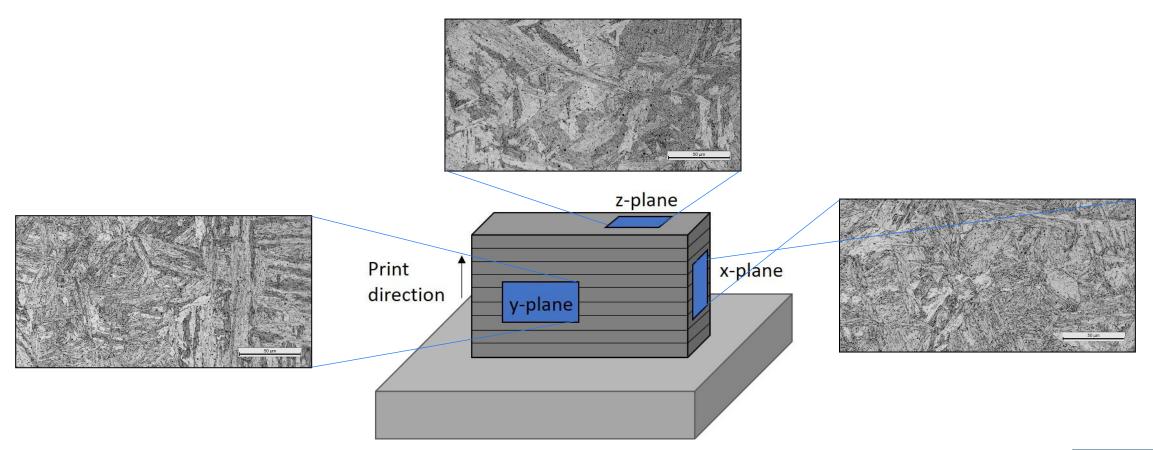

What may happen during 3D printing?

Potential failure mechanisms

Polished vs. milled samples – All comply with the Design Curve

Powder particle impact on print quality

Minor impact on DE and build rate Some impact on spatter and seam width



PSD [µm]	Spatter	Seam width [mm]	Build rate [mm]	Deposition Efficiency (DE)		
53 < ø < 90	Yes	4.0	1.0 28.7 g/min	77%		
22 < ø < 53	Νο	4.5	1.0 30.4 g/min	85%		
15 < ø < 45	Νο	4.8	1.0 30.9 g/min	86%		

Structural dependance on print direction

... it does not matter much

Service conditions test at elevated temperature

Hot tensile test at 600 deg C


Temp.	Test vs. Spec.	Tensile [MPa]	Yield [MPa]	Elongation [%]	
20°C	Obtained	1133	1077	14.8	
	MMDPS	1067	1000	12.0	
600°C	Obtained	534	485	10.3	
	MMDPS	?	?	?	
Reduction	(20-600°):	53 %	55 %	30 %	
	Litterature study indicates: A drop of 40-60 % is to be expected				

3D printed parts – Mechanical properties: Results

Print

direction

Tensile and yield strength

- Passed ✓
- Regardless of particle size

i.e.: 3D-printed samples are "As strong" as reference

Homogenity

- Passed ✓
- No influence of print direction

k-plane

i.e.: 3D-printed parts are *"As homogenous" as reference*

Fatigue test

1,0E+04

ximum Stre S (MPa)

- Passed ✓
- No (metal) fatigue observed

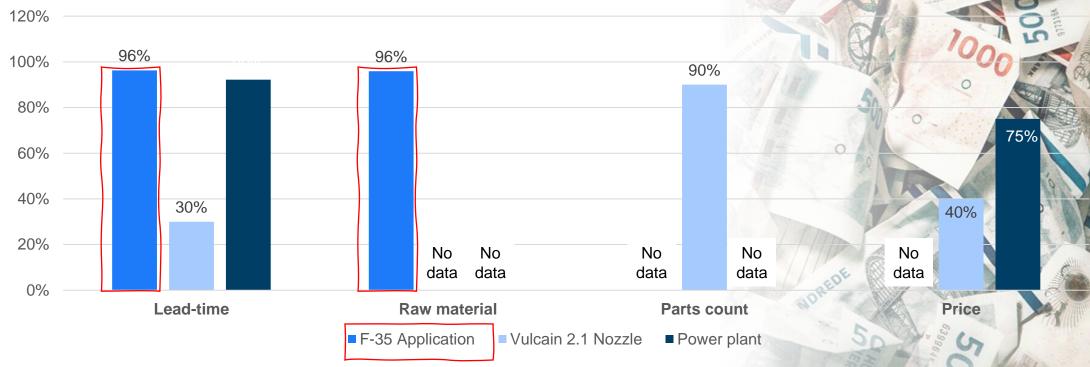
i.e.: 3D-printed parts are *"As durable" as reference*

1.0E+05

Number of cycles

1.0F+06

1.0E+07



Economical benefits – Does 3D printing pay off? Calculated examples

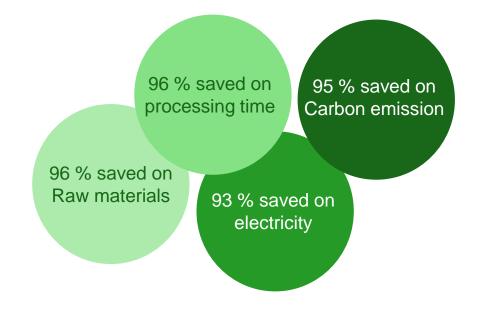
Does Large-Scale 3D print pay off?

Actual examples (FORCE Technology)

Pay-offs from 3D print/re-manufacturing (Savings/Reductions)

Carbon footprint – A calculated comparison F-35 part: CNC-machined vs. 3D printed

Carbon footprint – A calculated comparison


F-35 part: CNC machined vs. 3D printed

Assumptions:

- 1.85 kg of CO2 emission per 1 kg steel manufactured ¹⁾
- 0.135 kg of CO2 emission per 1 kWh consumed ²⁾

AM processing saves:

- 115 hours of processing time
- 150 kWh of electrical energy
- **538** kg of CO₂ emission

	CNC		3D Print			Savings		
	Units	CO ₂ [kg]	Units	CO ₂	[kg]			
Processing time [hrs]	120)	4,5	5			115,5 hrs	
Raw materials [kg]	219	9 405,2	g	Ð	16,7		210 kgs	
Machining [kW/hr]	10) 162,0	20)	12,2		1110 kWh	
Carbon emmission		567,2			28,8		538,4 kg CO ₂	

Data sources:

¹⁾ McKinsey: <u>https://www.mckinsey.com/industries/metals-and-mining/our-insights/decarbonization-challenge-for-steel</u>

²⁶²⁾ Klima, Energi og Forsyningsministeriet: <u>https://www.ft.dk/samling/20191/almdel/kef/spm/380/svar/1674514/2215558/index.htm</u>

AM and 3D printing can assist the green transiti

The technology cannot stand alone, but may considerably assist via e.g.:

- Reduced materials consumption
- Reduced carbon foot-print
- Smarter products
- Increased product lifetime
- Re-use and recycle

The technology is already in widespread use...

Summary The potential of large-scale metal 3D print and AM

Summary – And the way ahead...

REDUNDANCY: AM is an enabler to circumvent traditional supply chains – "Build your own"

FLEXIBILITY: Think outside of the box – or inside a much bigger box...

AGILITY:

Saves time and materials (upto 95 %)

- Save on cost (upto 90 %)
- Quality requirements are achieveable

Keep in touch

Michel Honoré Senior Team Leader mih@force.dk +45 4325 0467 forcetechnology.com

Follow us on:

